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In this paper an algorithm for solving a linearly constrained nonlinear
programming problem is developed. Given a feas’ble point, a correction vectcr
is computed by solving a2 least distance programming problem over a polvhedral
cone defined in terms of the gradients of the 2 imost? binding constraiats.
Muk.i's approximate scheme for computing step sizes is generalized to handle
the constraints. This scheme provides as estimate for the step size based on
a quaqratic approximation of the function. This estimate is used in conjunc~
tion with Armijo line search to calculate a new point. It.is shown that each
accumulation point is a Kuhn-Tucker point to a slight perturbation of the

original problem. Furthermore, under suitable second order optimality condi-

tions, it is shown that eventually only one trial is needed to compute the

step size.
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1. Introduction

This paper addresses the following linearly constrained noanlinear pro-

gramming problem:

P: minimize f(x)

subject to Ax < b

where f is a twice continuously differentiable function on Rn, and A 18 an

£xn matrix whose jth row is denoted by a§, and where 2 superscript t denotes

the transpose operation.

There are several approaches for solving this problem. The first ome
relies on partitioning the variables into basic, nonbasic, and supérbasic
variables. The values of the superbasic and basic variables are modified
while the nonbasic variables are fixed at their current values. Examples of
methods in this class are the convex simplex method of Zangwill {18]), the
reduced gradient method of Wolfe {17], the method of Murtagh and Saunders {12],
and the variable reduction method of McCormick [81.

Another class of methods is the extension of quasi-Newtoun algorithms
unconstrained to constrained coptimization. Here, at any iteration, a set of
active restrictions 1s identified, and then a modified Newton procedure is
used to minimize the objective function on the manifold defined by these active
constraints. See for example Goldfarb [6], and Gill and Murray {5].

Other approaches for solving problems with linear constraints are the
gradient projection method and the method of feasible directions. The former
computes a direction by projecting the negative gradient §n the space crtho-
gonal to the gradients of a subset of the binding constraints while the latter

method determines a search direction by solving a linear programming problem.
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For a review of these methods the reader may refer to Rosen [14], Zoutendijk
[19}, Frank and Wolfe [4]}, and Topkis and Veinott [15).

In this paper, an algoritim for solving problem P is proposed. At each
iteration a correction vector is computed by £inding the minimum distance
from a given point to a polyhedral cone defined in terms of the gradients
of the "almost” binding constraints. An approximate line search procedure

which extends those of Armijo [1l] and Mukai [10, 11] for unconstrained opti-

Lk

mization is developed for determining the step size. First, an estimate of
the step size based on a quadratic approximation to the objective function is
computed, and then adjusted if necessary.

In Section 2, we outline the algorithm. In Section 3, we show that

accumulation points of the algorithm are Kuﬁn—Tucker pointg to a slight per-
turbation of the original problem. Finally, in Section 4, assuming that the
algorithm convergeas, and under suitable second order sufficiency optimality

conditions, we show that the step size estimates which are based on the quad-
ratic approximation are aéceptable so that only one functional evaluation is

eventuzlly needed for performing the line search.

2. Statement of the Algorithm

Consider the following algorithm for solving Problem P.
Step O
Choose values for the parameters c, z, §, and €. Select a point Xq such that

AxO.§ b and let 60 = §, Let i = 0 and go to Step 1.

Step 1
Let w, be the optimal solution to Problem D(xi) given below:




L a1 T a1 B AN s M e S st i b O s S i et s o
b

D(xi): minimize Vf(xi)tw + %-z whe

tw.§ 0 for jeI(xi)

subject to aj

I(x) = {3: agxi > b, - c}

It v, = 0, stop. Else, go to Step 2.

Step 2

Let

and let

and go to Step 3.

Step 3
1f

2 2
B(xgbed,) + £(x;-ed,) - 2£(x)) > "¢, HdiH

2 t
] - £ Vf(xi) d1
i f(xi+€di) + f(xi-edi) - Zf(xi)

X

"’mm-mﬂ-wun
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and let 6i+l = Gi,

and go to Step 4.

and go to Step 4. Otherwise, let li =1, ¢ = % é

1+1 i’

] Step &
3 Let

o; = min {l,li} 2.7)
and compute the smallest nonnegative integer k satisfying
K 1.k 1.1,k t
1 , f(xi+(2) uidi) - f(xi) :_3(2) ain(xi) 4, (2.8)

k

= x. + aiC%) idi, i=1+4+1, and go to Step 1.

Let ki = k, X1 i

E: The following remarks are helpful in interpreting the above algorithm.

1. A direction LA 1s determined by solving Problem D(xi). This problem

o

finds the point in the convex polyhedral cone {w: a;w < 0 for jsI(xi)}

which is closest to the vector - %-Vf(xi). Methods of least distance pro-
gramming, as in the works of Bazaraa and Goode [2}, and Wclfe [16) can be
used for solving this problem., Special methods that take advantage of the

structure of the cone constraints may prove quite useful in this regard.

2. The restrictions enforced in Problem D(xi) are the c-binding constraints

at X that is, those satisfying b, ~ c < a,x, <b,. If w, = 0, then the

t
p v 3 1 -73
. : algorithm is terminated with x,. In this case, from the Xuhn-Tucker condi~-
tions for Problem D(xi), there exist uj for jeI(xi) such that:




0

TE(x,) + z u.a, =
1 jEI(xi) 3

ug 20 for 3el(x,)

These conditioms imply that x, is a Kuhn-Tucker point for the following

1

pro-lem:

minimize f(x)

t t
subject to ajx < ajxi for jaI(xi)
atx < b for j41(x,)
I ~3 i

Noting that bj - ¢ < a;xi j_bj for jEI(xi), if ¢ is sufficiently swall, it

is clear that the algorithm is terminated if x, is a Kuhn~Tucker solution to

i
a slightly perturbed version of Problem P. The following definition will

| thus be useful.

Definition 2.1

* * .
D(x ) is equal to zero, then x is called a ¢-KT solution to Problem P.

i

i

: vhich maintains feasibility of x + d,.

*
let x be a feasible point to Problem P. If the optimal solution to Problem

3. if x, + vy is feasible to Problem P, then the search vector di is taken

as w,. Otherwise, d{ is taken to be the vector of maximum length along vy



4, Steps 3 and 4 of the algorithm compute the step size taken along the

vector di in crder to form X441° As proposed by Mukai {10, 11}, first an

estimate of the step size li is calculated. When appropriate, A, is computed

i
by utilizing a quadratic approximation of the function f at X5 otherwise ki
is taken equal to 1. In order to ensure feasibility to Problem P, the first

trial step size a, used in conjunction with Armijo line seaxrch [1], is the

mininum of Ai and 1. As will bg shown In Section 4, under suitable assump-

tions, for large i, test (2.5) passes, ki = 0, and a, = Xi < 1. This confirms
efficiency of the line search scheme where eventually only one trial is

needed to compute the step size.

3. Accumulation Points of the Algorithm

Theorem 3.1 shows that each accumulation point of the proposed algorithm is
a ¢-KT point. In order to prove this theorem, lemmas 3.1 and 3.2 are needed.
These two lemmas extend similar results of Mukai [10] for unconstrained problems.

in order to facilitate the development in this section, the following
notation is used. Let w(x) be the optimal solution tc Problem D{x) and let

RB(x) be as given in (2.3) with X replaced with x. Finally, let d{x) = B(x)w{x).

Lemma 3.1
*
Suppose that x is not a c¢-KT point for Problem P. Then, there exist scalars

i *
U and s > 0 so that u < a(x) < 1 for each x with [[x-x il < s.

Proof

There exists s, > 0 so that I(x) = I(x*) for all Hx~x*H < s;. Thus, the
feasible region for Probiem D(x) is equal to that of Problem D(x*) for all x
satisfying Hx—x*|[ < s,. By continuous differentiability of f, it then follows

*
that w(*) 1s continuous in x at x , see for example Daniel [3]. Particularly,




, : * , »
there exists a number 5, > 0 such that I+(w(x)} = I+(w{x ) if Yx-x || < 8y¢

This together with the continuity of w(*) and the formula for computing B(°)

*
imply that B8(*) is continuous in x at x . Hence, d(+*) is also continuous.

* * *
Since x i3 net a ¢~XT peint, then w(x ) # C. TFurthermore, b, - a§x > ¢ 1if
3 Z
* * *
agw > 0 which implies that B{(x ) > 0. Therefore d{(x ) # 0. By continuity

. *
cf B{+) and d(*) at x there exist scalars ¢ ard s > 0 so that

/i

sl ato % > Laaae™yi? 26 xmx™ll < s G.1)
Flxted (1)) + E(x-ed(x)) - 26(x) < ¢ if fw-x'] < s (3.2)

Now, let x be such thatllx-x?§}< 8. Since v {x) sclves Problem D(x), then
Vf(X)tw(x) < - l—zflw(xﬂiz. Ttis, in turn, iwplies that - Vf(x)td(x) > i,
] -2

B(x) |ld(x) ”2 and from (3.1) we get:
- TE@ a0 > Fz e aah P v o (3.3)

If test (2.3) passes, then from {3.2) and (3.3) the fcllowing lower bound on

ki is at hand:

2 t -2
~ £79f(x) d(x) s £

M OT FGed(®)) + Flred (0 - IE0) > o

2
1f test (2.5) fails, then Ai = 1 and hence Xi > min {1, EEX} = u. Since
o, = min {1, Xi}, the desired result follows.
Lemma 3.2
*
1€ x 1is not a ¢~-KT point for Problem P, then there exist a number s > 0 and

*
an integer m S0 that k(x) < m if || x~-x || < s, where k(x) is the Armijo integer




given by (2.8) with xi and ¢, replaced with x and a(x) respectively.

Proof
As in the procof of Lemma 3.1 and by continuous differentiabilitv of £, there

. *
exist scalars s, h, and v > 0 so that for || x-x H < s the following hold:

Vi) " (x) < -

VECergd ) a0 - @ G| <2y for eacn gef0,n (3.5)

Now let m be the smallest nonnegative integer so that (%)m.i h and let x be

*
such thatl{x—x H < 5. Then there exists 6e{C,1] such that:

k@ @dm) - £ - T a6 4

= PTG a0 ) - P MTE 40

= (%)ma(x) l_{?f(x+8(%—)m(x(x)d(x))td(x) - v a0} + % Tf(x)td(x)—l (3.6)

Since 8(%0ma(x).i h, {3.4) and (3.5) imply that the right hand side of (3.6)

is < 0 which in turn shows that k(x) < m, and the procf is complete.

Theorem 3.1
Either the algorithm terminates with a c-KT point for Problem P or else gen-
erates an infinite sequence {xi} of which any accumulation point is a ¢-KT

point for Problem P.




Proof

Clearly the algorithm stops at X, only if Xy is a c-KT peoint. Now, suppose
"
that the algorithm generates the infinite sequence {xi}. Suppose that x 1s
*
an accumulation point so that Xy 5» x for some infinite set K of positive

integers. Since f(xi) is decreasing monotonically and since f(xi) é» F(x )

*

then f(xi) — £{x ). Suppose by contradiction to the desired conclusion that
*

x 1s not a c~KT point. From Lemmas 3.1 and 3.2, there exist positive numbers

Y and y and an integer m so that oy > Y, Vf(xi)tdi £ -y, and ki < m for large

i in K. Therefore,

k
1,1.71 t 1 1.m

for large 1 in K. This implies that f(xi) — =, contradicting the fact that

%
f(xi) — f(x ). This completes the proof.

4. Eventual Acceptance of the Step Size Estimate

*
In the previous section, we showed that an accumulation point ¥ of the
sequence {xi} generated by the algorithm is a KT point to the perturbed pro-

blem P' given below:

e B b o e it em s P s A

P': minimize f(x)

*
subject to a x < atx for jrIl({x )

3

t *
4% < by for j¢I(x )

a

*
Here, we assume that the whole sequence {xi} converges to a point x which

R

satisfies suitable second order sufficiency conditions. Under this assump-

tion, we show that test {2.5) is eventually passed. Furthermore, we show i




————ey

c that A, < 1 and that k, = 0 for i large enough.

i,
The second order condition is given in Definitiom 4.1. It is well-knowm
*
that x satisfying this condition is a strong local minimum for problem P'.

% _
That is, there exists a numper ¥ > 0 so that £{x } < £(x) if x is feasible

to problem P' and[fx~xﬁ! < {, see for example McCormick [9] and Han and

Mangasarian [7].

Definition 4.1

* #* x o *
Let x be such that Ax < b and let I(x ) = {j: ajx > bj -c}. x is said

to satisfy the second order sufficiency optimality conditions for problem P’
- *
if there exist scalars u, > 0 for jeI(x ) and v > 0 so that:

i

*
VE(x ) + ) u,a, =0
jEI(x*) 33

* *
£(x )% < o0, a‘j‘d <0 for JeL(x), | d || = 1 => a®uxd > v (4.1)

Theorem 4.1 shows that test (2.5) will eventually be passed so that

;5 ki is given by (2.8). The following two intermediate results are needed to

prove this thecrem.

Lemma 4.1

T£Cd < C and || d || = 1 4mply that d"Hd > ¥ > O then there is a number 8 > 0

so that Cd < 81 and || d || = 1 imply that aud > v/2.

R T Y T A A P~ TS e gt T AT

Proof

Suppose by contradiction that for each integer k there is a vector dk such

that




oo

Lemma 4.2

Proof

llap | =1, cd, <41, and dSua, < v/2 L (6.2)

Since the sequence {dk} is bounded, it has an accumulatfon point d. From
(h.2),|]d|[ =1, Cd < 0, and dtHd < Y/2 vwhich contradicts the assumption of

the lemma.

If either {xi} converges or {x: Ax < b, £(x) < f(xo)} is bounded, then

di + 0.

Since 0 < 61 <1 and di =g it suffices to prove that w, - 0. Suppose

1%y i
there exist an infinite set of positive integers K and a number € > 0 so

that

v, 11> e for ek (4.3)

Clearly, under either of the assumptions of the lemma, there exist an infinite set

. o~ * K' % *
K' €K and a point x so that x, * x . By Theorem 3.1 x is a c-XT point

i
for Problem P. Thus, w* = 0 is the unique optimal solution to Problem D(x*).
But for large ieK’, I(x*) - I(xi), and by continuity of the solutioms to

D(*) we must have ‘Iwi” < ¢/2 for large 1 in K'. This contradicts (4.3) and
the pfoof s complete.

Throughout the remainder of this section, the following notation will

be used for any scalar vy:




o R e O T e T . T T A AU,

12 _
1
&
¥ 1
By = 2 [ (1~y) HOxy+yyd )dy %.3)
0
We can integrate by parts to obtain
- t 1 2.ty
£Qx +yd)) - £0x,) = ¥Wi(x,) d, + 3 Y dF.d, (6.4)

For further details, the read-r may refer to Polak {13, p. 293].

Theorem 4.1 ]
—_— . ‘
Let {xi} be a sequence generated by the algorithm. Suppose that x, > x and

x :
x satisfies the second order optimality conditions for problem P'. Tren 1

there exists an integer m so that test (2.5) passes for all i > m,

Proof

Prom (4.3) and (4.4) we get:

: 1 2.t s

ﬁ f(x1+€di) - f(x )= er(x ) d + € d idi
1 2.t -¢
f(xi—edi) f(x ) = —er(x ) d + 7€ diHi di

Adding we obtain:

E(xgbed)) + £(x,-ed)) - 260x,) = % ezdi(ﬂi-m;e)d . (4.5)

¥ ® *
Now for jel(x ), atx >b, - ¢, Since X, *x then for i large enough,

J J

- ¢ 80 that jeI(xi). By step 1 of the algorithm ajvi < 0 and s0

< 0 for 1 large enough and jet(k ). Likewise, from step 1 of the

B! t
;l
"1

3%
at
)

EN




d
t S t_ %4 *
algorithm Vf(xi) wi_g 0 and gen-e Vf(xi).TFE;n—‘i 0. Since X, X, then for
*
any number 6 > 0, V£(x )t ||diil:'e for 1 large enough. Thus, Lemma 4.1 and
' i

the second order conditions imply that

dzﬂ(x*)di_z %1!41||2 for large i (4.6) ;
Now note that
€ * 1 *
185 - 8y I =112 [ 1) [mex e - Jay |
1 %
5_201 (1-y) ||R(x yed )-H(x ) |ldy (4.7

*
Since XX, then by Lemma 4.2, di + 0. Particularly, for i large enough,

ElH(xi+yedi)—H(x*)[| <-% for all ye{0,1]. From (4.7),[fnf - 2G| < %..

This together with (4.6) yields:

’ dHCd, = d:H(x*)di + d;(ﬁi-ﬂ(x*))di
i
>3 Na 12 - fla, 12 es-ae |
> %-l]dillz for large i (%.8)
i Similarly,
i a4, > Llia, II°  for large 1 (4.9)

E ] From (4.5), (4.8), and (4.9) it immediately follows that




N - . 0L TR WP w5 s RS .

EOxghed,) + £(x,-ed,) - 2£(x)) > e?Y(la, I*  for large 1 (4.10)

From (4.10), if test (2.5) fails for a large 1, we must have:
2 2 : : 2y 2
€ Gi||diH > £(x +ed,) + £(x,~ed;) - 2f(x;) > € U[di i

that is, 51 > %~. 1f the conclusion of the lemms does not hold, thenm test
(2.5) fails infinitely often and then 61 + 0. This contradlcts 61 > %-for

large i, and the proof is complete.

Theorem 4.2
*
Let {xi} be a sequence generated by the algorithm. Suppose that X, * X and
*
that x satisfies the second order optimality conditions for Problem P'. Then
1 t
there exists an integer m so that f(xi+a1di) - f(xi) 5_3 ai?f(xi) d, for all

i
i > m, that s, k, = 0 for all 1 > m.

Proof
By Theorem (4.1), test (2.5) passes for large i so that Xi is given by

2 t t
- € Vfoi) di - Vf(xi) d1

1 ,t
7 44

ki -

(4.11)

" €, ..-€
£(x4ed,) + £(x-€d)) - 2£(x)) (H 4, )

If A, <1 so that a, = Ays then from (4.4) and (4.11) we get:

A
1 t, _1,2.t.14 2. « &
fixbad) - £Oxg) - 3o 080G )dy = 5 AydiHd, +y A vE(x ) dy

A
1,2 ¢ 1 1 . t.€ =€ _1 2.t € €
=3 Alemd, - i-di(ni4-ui 1 - 33 A4, (4 N, (64.12)

] i . . . e -
(s e L N PR R . <7 R ) e meew - et N S
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A
* -
Since Xy + x , then by Lemma. 4.2, di + 0., Thus Hii, Hi. and Hie converge to
*
H(x ) and the first term in (4.12) will be less than %% li'Idez for i large

enough. As in the proof of Theorem 4.1, d;(H§+H;€)di Z_%ﬂ}d412 for large 1.
Substituting in (4.12), the desired result holds.
Now suppose that Xi > 1 so that o, = 1. Then
2

1 t 1 .t.1 t ,
f(xi+uidi) - f(xi) -3 aivg(xi) di - *z---di}lidi + §-Vf(xi) 4 (4.13)

Since Ai > 1, then from (4.11) we must have

1 .t

t €, _—€
Vf(xi) di < - i'd )

H +H

1( i1 di

Substituting in (4.13) we get:

1 ooont, L 1otl, 1 .toe €
BCryto,d)) - £(x)) - 5o, VE(x )7y < 5 [4Hd, - 5 4, (H+H ")d,]

1 .t €. -
-2 + .14
) di(ﬂi Hi )di (4.14)

That the right hand side of (4.14) is < O for large i follows exactly in the

same manner in which we proved that (4.12) is < 0. This completes the proof.

Finally, we state certain conditions in Theorem 4.3 below which guarantee

that 11 < 1 so that a, = Ai for 1 large enough.

Theorem 4.3

Let {xi} be a sequence generated by the algorithm. Suppose that x, +* x* and
that x* satisfies the second order optimality conditions for Problem P', 1If
z <~% s then there i3 an integer m so that Ai <1 for all 1 > m, that is,

ai = 7&1 for all 12>m.




Proof

By Theorem 4.1 there is an integer m so that for i > m we have:

- efvex,)te - vex)ta
L, = W - i1 (4.15)
i f(x1+€di) + f(xi'edi) - Zf(xi) %—dz(ﬁiﬂl’s)d
1 %
As in the proof of Theorem 4.1
1.t € -€ X 2
5 d (EHE ), > 4 Il for 1 large enough (4.16)

Since v, golves Problem D(xi), then there exist scalars u,, > 0 for jSI(xi)

ij
such that

Ti(x,) + zw, + ] u,.a, =0 (4.17)
1 1 JeTlx)) 1]
uija;wi = 0 for jeI(xi) (4.18)

; 2
From (4.17) and (4.18) it follows that Vf(xi)twi = - zi(wﬂl . But by Theorem 3.1
* * *
x 1s a ¢-KT point and hence the optimal solution w to Problem D{(x } is

* *
w = 0. Since x, * x , by continuity of the optimal sclution to Problem D(-),

i
and since bJ - a§x1.> c for each jei+(wi), it fcllows from (2.3) that B1 = 1
for large i. Thus di = w, 80 that

Vf("i)tdi =~z lldiilz for large i (4.19)

Substituting (4.19) and (4.16) in (4,15), it is clear that Ai < 1 for 1 large

enough, and the proof is complete.
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